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ho-mol-0-gous | ha'malagss |

adjective
having the same relation, relative position, or structure.

« Biology (of organs) similar in position, structure, and
evolutionary origin but not necessarily in function: a seal's
flioper is homologous with the human arm. Often
contrasted with analogous.

« Biology (of chromosomes) pairing at meiosis and having the
same structural features and pattern of genes.

« Chemistry (of a series of chemical compounds) having the
same functional group but differing in composition by a
fixed group of atoms.

ORIGIN

mid 17th century: via medieval Latin from Greek homologos
‘agreeing, consistent’, from homos ‘same’ + logos ‘ratio,
proportion’.
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Figure 2. Exemplary lipid species.

Many hundred different types of lipids have been characterized, but some generalizations can be made. Archaea contain a variety of lipids that are
characterized by isoprenoid chains, which are ether-linked to the hydrophilic head group and can span an entire membrane, thereby generating a
mono- instead of a more canonical bilayer. They are generally less permeable and the plasma membranes they constitute are often covered with
a paracrystalline protein layer, the S-layer. Bacterial lipids are characterized by glycerol-3-phosphates linked to fatty acid side chains through an
ester bond. Membranes can be enriched with molecules other than proteins, such as the bacterial ladderane that makes a membrane less perme-
able. The main lipid types of eukaryotes are like those of bacteria and none of their many compartments share an identical lipid composition. The
two compartments of endosymbiotic origin, the mitochondrion and plastid, are characterized by their very own specific lipid types, cardiolipin and
galactolipids, respectively. Both of these lipid types play a role in stabilizing components of the organelle’s different electron transport chains and are
lost in organelles that no longer synthesize ATP through chemiosmotic coupling.
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Endosymbiosis

en-do-sym-bi-0-Sis | endssimbiosss |

noun Biology

symbiosis in which one of the symbiotic organisms lives
inside the other.
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Figure 2. The phylogenetic position of mitochondria among
alphaproteobacteria remains contentious.

The class Alphaproteobacteria encompasses well-defined diverse orders:
the Rhizobiales, Rhodobacterales, Caulobacterales, Sphingomonadales, Pe-
lagibacterales (SAR11), Rhodospirillales, and Rickettsiales [5,35] (the order
Magnetococcales [36] is a distant sister to all other alphaproteobacteria).
Some recently proposed candidate orders with sole or few representatives are
also depicted (see [129]). The mitochondrial lineage could be placed at the
base of Alphaproteobacteria, as sister to all ‘free-living’ alphaprotebacteria
(e.g., [14]) as sister to the Rickettsiales or within the Rickettsiales (e.g., [13]); all
positions are shown with dashed lines. Alphaproteobacteria are incredibly
diverse. The Rhizobiales include plant-associated nitrogen-fixing rhizobia,
facultative intracellular parasites as well as methanotrophs. The order Rho-
dobacterales encompasses purple non-sulfur bacteria, as well as abundant
aerobic oceanic phototrophs and diverse heterotrophs. Some of the most
abundant bacteria in the ocean are the small heterotrophic pelagibacterales.
The Rickettsiales is composed exclusively of obligately intracellular endo-
symbionts or parasites. Phototrophs are found among the Rhizobiales, Rho-
dobacterales, Caulobacterales, Sphingomonadales, and Rhodospirillales.

The Origin and Diversification of Mitochondria

Andrew J. Roger'-*, Sergio A. Mufioz-Gémez’, and Ryoma Kamikawa?

Current Biology

Figure 1. The origin and evolution of
mitochondria and eukaryotes.

Mitochondria evolved from an endosymbiotic al-
phaproteobacterium (purple) within an archaeal-
derived host cell that was most closely related to
Asgard archaea (green). The earliest ancestor of
mitochondria (that is not also an ancestor of an
extant alphaproteobacterium) is the pre-mito-
chondrial alphaproteobacterium. Proto-mitochon-
dria evolved from this first alphaproteobacterial
endosymbiont, and comprise all transitional forms
of mitochondria before the mitochondrial cen-
ancestor, the mitochondrion in the last eukaryotic
common ancestor (LECA). The timing of the mito-
chondrial endosymbiosis is uncertain (indicated by
a purple shadow along the proto-eukaryotic stem)
but postdates the first eukaryote common ancestor
(FECA) and predates LECA. As far as we know,
transitional ‘proto-eukaryotes’ between FECA and
LECA went extinct (indicated by crosses). The
complexity of the proto-eukaryotic genome and
proteome gradually increased during eukaryo-
genesis (increasingly wider green branches), but
the mitochondrial endosymbiont’s genome and
proteome were reduced, as the organelle incor-
porated proteins of host and foreign origin
(progressively thinner purple branches for the
mitochondrial endosymbiont contribution, with
thin coloured branches indicating lateral gene
transfers). Adaptations of mitochondria to anaero-
biosis and outright loss of mitochondria (upper
right circle) were facilitated by lateral gene transfer
events.
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A. thaliana chloroplast DNA (inner circle: clockwise, outer: counter-clockwise).
Function: transcription (red), translation (yellow), photosynthesis (green),

tRNA (black), other (gray), unknown (orange). Sequence: AP000423
(see Sato et al., DNA Res 6: 283-290, 1999).
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Homologous vs. analogous

a-nal-o-gous | 8'nalagas |

adjective (often analogous to)

comparable in certain respects, typically in a way which
makes clearer the nature of the things compared: they saw
the relationship between a ruler and his subjects as
analogous to that of father and children.

- Biology (of structures) performing a similar function but
having a different evolutionary origin, such as the wings of
insects and birds. Often contrasted with homologous.
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Molecular homology
Synteny

syn-ten-ic | sin'tenik |

adjective

(of genes) occurring on the same chromosome: syntenic
sequences.

-
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Network-based microsynteny analysis identifies major
differences and genomic outliers in mammalian and

angiosperm genomes

Tao Zhao® and M. Eric Schranz®'
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Fig. 2. Phylogenetic relationships of mammalian and angiosperm genomes analyzed. (A) Mammal genomes used (tree in red), highlighting the three main
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pNAS RESEARCH ARTICLE EVOLUTION u OPEN ACCESS
——

Evolution of the ancestral mammalian karyotype and
syntenic regions

Joana Damas®

, Marco Corbo®, Jaebum Kim®, Jason Turner-Maier®, Marta Farré®, Denis M. Larkin®, Oliver A. Ryder®®, Cynthia Steiner”,

Mearlys L. Houck, Shaune Hall, Lily Shiue!, Stephen Thomas), Thomas Swalel, Mark Daly, jonas Korlach¥, Marcela Uliano-Silva"™", Camila J. Mazzoni™,
Bruce W. Birren", Diane P. Genereux“®, Jeremy Johnson, Kerstin Lindblad-Toh“*®, Elinor K. Karlsson“?®, Martin T. Nweeia =" ®,
Rebecca N. Johnson*®, Zoonomia Consortium', and Harris A, Lewin®**>
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Fig. 2. Evolution of MAMs in the lineage leading to humans. MAMs are distinguished by the colors at the top of the diagram. Colored blocks for every other
ancestor and human depict the orthology to MAMs. Lines within colored blocks represent block orientation compared with the MAMs, with positive and neg-
ative slopes portraying the same or different orientations, respectively. Gray ribbons depict the orthology of each ancestor to its phylogenetically closest
ancestors or species. An orthology map for each pairwise comparison is presented in Dataset S12.
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How and Why Chromosome Inversions Evolve

Mark Kirkpatrick*

Section of Integrative Biology, University of Texas, Austin, Texas, United States of America
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Figure 1. Chromosome inversions that distinguish humans and
chimpanzees inferred from a comparison of their genomic
sequences [3]. The human chromosome is shown on the left and its
chimpanzee homologue on the right for the autosomes and the two
sex chromosomes (X and Y). Each red line corresponds to an inversion,
with larger inversions (>100 kb) represented by multiple lines.
doi:10.1371/journal.pbio.1000501.g001

Centromere Destiny in Dicentric Chromosomes: New Insights
from the Evolution of Human Chromosome 2 Ancestral
Centromeric Region

Giorgia Chiatante,"” Giuliana Giannuzzi,® Francesco Maria Calabrese," Evan E. Eichler,** and
Mario Ventura®'

~ 23 mya (

~ 14 mya
~9 mya
~7 mya

Primate ® #27-28,33

Ancestor  [e /5 1115 30
— K ® -3
NC b o na ©#33-63 AC @|ee#-63
77

it

probe #60

probe #52 | probe #63 ' probe #18 probe #59 probe #60
Fic. 2. For every species, probes with the same FISH pattern were grouped and representative results for each class are displayed. In HSA, all fosmids
mapped to chromosome 2, only three of them mapped both on the ancestral centromere (AC) and on the primary constriction of chromosome 2
(HSA red signals). For the other species, we used the chromosome llq active centromere as a landmark. In PTR and GGO, we were able to group the
FISH results into two classes, since some probes mapped to the p-side of the centromere, whereas others to the g-side. In PPY, we distinguished
four clusters of signals, two for each chromosome arm: we observed distal and proximal signals on both the p- and g-arm. Finally, in MMU we
detected signals only on the p-arm, where the inactivated centromere is located. The active centromere is a neocentromere (NC). The * indicates

that not all probes from #37 to #63 actually mapped on MMU 12.
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SHORT REVIEW

Building divergent body plans with similar
genetic pathways

BJ Swalla'>?

Center for Developmental Biology, Department of Biology, University of Washington, Seattle, WA 98195-1800, USA; *Friday Harbor
Laboratories, University of Washington, Friday Harbor, WA 98250-9299, USA; *Smithsonian Marine Station, 701 Seaway Drive, Fort
Pierce, FL 34949-3140, USA
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Figure 6 Expression of Hox genes in deuterostomes — the Hox gene cluster is duplicated in vertebrates. There are eight Hox gene clusters in
teleost fishes, showing an additional duplication from the four Hox gene clusters found in the tetrapod vertebrates. In contrast, the
invertebrate deuterostomes each have a single cluster. Ascidians lack some of the middle Hox genes, and the cluster is broken up onto two
chromosomes. Echinoderms and hemichordates share an independent duplication of the posterior genes, called Hox 11/13a, Hox 11/13b and
Hox 11/13c. Hemichordates show anterior to posterior expression in the ectoderm, which will produce a nerve net later in development.
Echinoderms show adult expression in the nerve ring with the oral side corresponding to anterior in chordates and hemichordates.
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Hox and Wnt pattern the primary body axis of an
anthozoan cnidarian before gastrulation

Timothy Q. DuBuc!, Thomas B. Stephenson?, Amber Q. Rock? & Mark Q. Martindale ® 2
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Fig. 1 Anterior-posterior patterning and the emergence of a Hox cluster. a Bilaterians are classically defined by an anterior-posterior axis perpendicular to
the dorsal ventral axis. Cnidarians are the sister taxa to bilaterians and are the only basal lineage to have a diverse cluster of Hox genes. b The common
ancestor of the deuterostome lineage likely had a Hox cluster consisting of 14-15 Hox genes, closely associated with the homeobox gene Eve'®. ¢ Evidence
from the protostome, Tribolium castaneum, suggests that the protostome ancestor also had an intact Hox cluster consisting of at least 10 linked Hox

genes'”70. d The cnidarian ancestor had both anterior (Hox1 and Hox2) and central/posterior (Hox9-13) class Hox genes?2. e The Hox complement of the

anthozoan cnidarian, Nematostella vectensis, has phylogenetically anterior (NvAx6, NvAx6a, NvAx7, and NvAx8) and central/posterior (NvAx1 and NvAxia) :
Hox genes' 1>, Depiction of Hox expression along the oral-aboral axis of a cnidarian, and the anterior-posterior axis of invertebrates and vertebrates. The
anterior (NvAx6) and central/posterior (NvAxT) Hox genes of Nematostella are expressed along the oral-aboral axis during larval development. Regions of
anterior, central, and posterior Hox expression are designated with shades of red, green, and blue, respectively. Asterisk indicates site of mouth formation .
/
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Floral Homeotic Factors: A Question of Specificity

Kevin Goslin ¥/, Andrea Finocchio  and Frank Wellmer *

@
O

MADS
quartets

Figure 1. The ABCDE model of floral organ identity specification. The identity of the different floral
organs is specified by the combinatorial activity of A-, B-, C-, D-, and E-class genes (as indicated).
The MADS-domain transcription factors encoded by these genes act together in different tetrameric
complexes (‘quartets’) to control the developmental programs needed for the formation of sepals,
petals, stamens, carpels, and ovules. Colors indicate the composition of the different MADS-domain
protein quartets. Figure created with BioRender.com.

Primer

The ABC model of
floral development

Vivian Irish

oA
l H l \ v v v v

Sepals Petals Stamens Sepals Petals Petals Petals Petals Stamens

Current Biology

Figure 3. Variations on the ABC theme.

(A) Ox-eye Daisy (Leucanthemum vulgare) showing the marginal ray flowers and the central
disc flowers; despite the different morphologies of each flower type, the organization of each
can be explained by the ABC model (illustrated below). (B) Rose (Rosa spp.) with multiple
whorls of petals that correspond to an expansion of A + B gene activities (below). (C) Tulip
(Tulipa gesneriana) with sepal-like organs in the first and second whorls; this can be explained
by a shift in the domain of B gene function (below). (D) Columbine (Aquilegia formosa) flowers
contain stamenodia, a novel organ type situated between the stamens and the carpels. (E)
Flowering dogwood (Cornus florida) possesses small greenish flowers surrounded by four
large, showy petaloid bracts. (F) A female pine cone (Pinus strobus). (All images in Figure 3
from Wikimedia commons.)
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Genetic Codon Chart

u C A G
UUU| Phe UGU|Cys || U
UUC| Phe UGC|Cys || C
UUA| Leu UGA|Stop| [A
UUG| Leu UGG| Trp | |G
CUU| Leu CGU| Arg | |U
CUC| Leu CGC|Arg || C
CUA| Leu CGA| Arg | [A
CUG| Leu CGG|Arg | |G
AUU| lle U
AUC| lle C
AUA| lle AGA| Arg | |A
AUG| Met AAG| Lys [ |AGG| Arg | |G
GUU| Val | |GCU| Ala | |GAU| Asp | |GGU| Gly || U
GUC| Val | |GCC| Ala ||GAC| Asp | |GGC| Gly || C
GUA| Val | |GCA| Ala [[GAA| Glu | |GGA| Gly | |A
GUG| Val | |GCG| Ala | |GAG| Glu | |GGG| Gly | |G

Translation START codon

Translation STOP codon

Positively charged amino acids

Negatively charged amino acids

Hydrophobic amnio acids

| Hydrophilic non-charged |

Cysteine
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Genomics: Evolution of the Genetic
Code

Patrick J. Keeling

Canadian Institute for Advanced Research, Botany Department, University of British
Columbia, 3529-6270 University Boulevard, Vancouver, BC, V6T 1Z4, Canada
Correspondence: pkeeling@mail.ubc.ca
http://dx.doi.org/10.1016/j.cub.2016.08.005

The genetic code is not quite universal. The rare variations that we know
of reveal selective pressures on the code and on the translation
machinery. New data suggest the code changes through ambiguous
intermediates and that termination is context dependent.
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Current Biology

Figure 1. Variation in the genetic code.

Schematic tree of life showing known variations in the genetic code within the three domains of life —
Archaea, eukaryotes, and Bacteria (including mitochondria and plastids). Alternative start codons are
not included, and are relatively common, and ambiguous codons are listed by their non-canonical
codon use only. Of particular note is the strong bias in changes between bacterial (UGA=W) and
nuclear genomes (UAR=Q).

Origins of tmRNA: the missing link in the birth of

protein synthesis?

Kevin Macé' and Reynald Gillet'"

Université de Rennes 1, CNRS UMR 6290 IGDR, Translation and Folding Team, 35042 Rennes cedex, France and

2Institut Universitaire de France

A B
The GNC primitive genetic code
u C A G u C A G
Serine
G Alanine Alanine Aspartic acid or C G Valine Alanine Aspartic acid Glycine 4
Giycine
lL The SNS primitive genetic code lL
u c A G u c A G
Aspartic acid Serine (4 Aspartic acid C
G Valine Alanine G Valine Alanine Glycine ———
Glutamic acid Glycine: G Glutamic acid G
C Histidine c
€ | vaine | citamicacd | Gutamicacid | ciutamicacd = | € | tewcine | proline Aginine |——
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The modern genetic code
u c A G
Aspartic acid %
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Leucine STOP codon [—S1OPcodon 1A
Tryptophan |G

Figure 2. Theory of the genetic code evolution. This shows the evolutionary pathway going from the GNC code (4 codons) to the SNS code (16 codons) to
the universal genetic code (64 codons). (A) Adapted from Massimo Di Giulio (72). (B) Adapted from Kenji Tkehara (10). (C) Instead of the conventional

representation, the modern genetic code is shown reflecting the order of codon occurrence (columns G and U inverted)
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Psuedogenes

pseu-do-gene |'soodajen |

noun Genetics

a section of a chromosome that is an imperfect copy of a
functional gene.
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Overcoming challenges and dogmas

to understand the functions of
pseudogenes

Seth W. Cheetham@®, Geoffrey J. Faulkner@® and Marcel E. Dinger

a Processed pseudogenes

[ Promoter )—E Jsaeeesd l freesas l
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\
Transcription
mRNA AAAAAAAAA
¥
Reverse transcription and integration
_1 )—

¢ Unitary pseudogenes

[ Promoter )—E

Ancestor gene

Mutation and loss of functional gene

T T S | e S 0 T

b Unprocessed pseudogenes

Promoter )—E

Duplication and mutation

[ Promoter )—EH |

d Polymorphic pseudogenes

Reference genome sequence (pseudogene)

[ Promoter )—EH |

Non-reference sequence (gene)

[ Promoter )—E

Fig. 1| Major classes of eukaryotic pseudogenes. a| Processed pseudogenes arise from the reverse transcription and integration of a processed mRNA.
b | Unprocessed pseudogenes originate from gene duplications that accumulate mutations, preventing their translation. c | Unitary pseudogenes are
derived without duplication from an ancestral protein-coding gene that has lost protein-coding potential. d | Polymorphic pseudogenes are sequences
that have disabling mutations in the reference genome, but are intact in other non-reference genomes.
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Translation into proteins

Sources of non-coding RNAs

DNA-mediated regulation

a p c Locus control
— Untruncated pseudogene = - Antisense pseudogene | }— region
1 Hybridization to parent mRNA
Translation

YN\

Processing into siRNAs  Translational inhibition

ﬁ AAAA -/\/

AAAA

f Gene conversion

e.g. POK2 TITTTITTTTTT e.g. NOS
T
b [ =
= | Truncated pseudogene [ | = = 1l Pseudogene IncRNA |||
Translation

<

e.g. NOTCH2NL

Fig. 2 | Examples of pseudogene functions. a| Untruncated pseudogenes
can encode full-length proteins with high similarity to their parent genes.
b|Truncated proteins encoded by pseudogenes can function through intact
domains. ¢ | Pseudogenes transcribed in antisense relative to their parent
genes can form hybrids with parental mRNAs, inhibiting translation.
Pseudogene-mRNA hybrids can be processed into small interfering RNAs

e.g. Lethe

—{  Pseudogene | Gene =

|

— — Gene| |-

(siRNAs), inhibiting parental gene expression. d | Pseudogenes can encode
long non-coding RNAs (IncRNAs) that function through RNA-protein inter-
actions. e | Pseudogenes can function in an RNA-independent manner
by facilitating 3D chromatin interactions. f| Pseudogenes can transfer dele-
terious alleles to their parental genes by non-allelic recombination
(gene conversion).
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Identification of an infectious progenitor
for the multiple-copy HERV-K human
endogenous retroelements

Marie Dewannieux, ' Francis Harper,** Aurélien Richaud,'* Claire Letzelter,’
David Ribet," Gérard Pierron,? and Thierry Heidmann'-*
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Figure 1. HERV-K(HML2) “endogenization” and present-day human proviruses. (A) Evolutionary
scheme for HERV-K(HML2) entry into and invasion of the genome of primates. (B) Map of the full-
length 9.4-kb long human-specific HERV-K(HML2) proviruses and comparison with the in silico-
engineered consensus sequence. Each provirus is represented by a solid dark line, with the amino acid
substitutions in Gag, Pro, Pol, and Env as compared with the consensus element indicated below the
line, and the insertions/deletions (ins/A) and premature Stop codons (red stars) indicated above the
line. The ORF map of the consensus provirus is shown, with gag in green, pro in pink, pol in blue, env
in orange and yellow, the bipartite rec in orange, and the two LTRs as gray boxes. (Note that the first
coding exon of rec belongs to the env ORF). The transcripts responsible for the expression of the viral
proteins, with the corresponding spliced out domains (dotted lines), are schematized below the ORF map.

Figure 2. Electron microscopy of the viral-like particles generated by the Phoenix provirus. Human 293T cells were transfected with an expression
vector for Phoenix (A-E), or mutants (F,G), and observed 48 h post-transfection. (A) Low magnification of particles assembled at the cell membrane. (B)
Representative image of particles budding from the plasma membrane. (C) High magnification of two particles, one of which (bottom) discloses a mature
(M) morphology with a condensed core, while the other appears to be still immature (IM) with two dark peripheral rings surrounding an electron-lucent
core. (D) High magnification of a particle with prominent spikes, corresponding to the Env protein. (£) Image of a particle after labeling with an antibody
specific for the HERV-K envelope protein and a secondary antibody linked to gold beads, obtained by immuno-electron microscopy. Quantification of
the labeling on 11 independent fields demonstrates association of the gold beads with the viral particles: 307 = 121 gold beads/um? for the viral
particles, versus 4.9 + 3.2 and 1.1 = 1.5 gold beads/pm? for the cytoplasm and particle-free extracellular space, respectively (P < 0.001 between viral
particles and any of the two other compartments, Student’s t-test). (F) Image of representative particles obtained after transfection with an expression
vector for the Phoenix pro mutant. All of them disclosed an immature morphology (41 of 41 identified “free” particles, i.e., no more in the budding
process, for the pro mutant, vs. 15 of 37 for Phoenix WT). (G) High magnification of a particle obtained after transfection with an expression vector for
the Phoenix env mutant. The membrane surrounding the particle is clearly detectable, without any spike. Scale bars: (4): 200 nm, (B-G):100 nm.
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Disclaimer

Figures, photos, and graphs in my lectures are
collected using google searches. | do not claim to have
personally produced the material (except for some). |
do cite only articles or books used. | thank all owners of
the visual aid that | use and apologize for not citing
each individual item. If anybody finds the inclusion of
their material in my lectures a violation of their copy
rights, please contact me via email.

hhalhaddad@gmail.com
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