Lecture 6:

DNA Sequencing The thing to the information

Course 485

Introduction to Genomics

AIMS

- Introduce DNA sequencing technologies.
- Highlight method of sequencing.
- Highlight sequence detection.

to decouple the two words. They're not identical and never have been. DNA is a *thing*—a chemical that sticks to your fingers. Genes have a physical nature, too; in fact, they're made of long stretches of DNA. But in some ways genes are better viewed as conceptual, not material. A gene is really information—more like a story, with DNA as the language the story is written in. DNA and genes combine to form larger structures called chro-

What is DNA sequencing?

It is reading the letters of the book. It is reading the exact nucleotide sequence of the genome.

What is DNA sequencing?

The identity of a nucleotide The location of a nucleotide

Sequencing methods available now!

- 1. Maxam and Gilbert chemical degradation method (extinct).
- 2. Sanger sequencing (dideoxy or chain termination method).
- 3. Illumina sequencing.
- 4. SOLiD sequencing.
- 5. Pyrosequencing.
- 6. Ion Torrent method.
- 7. Single molecule sequencing.

Why DNA sequencing?

- DNA sequencing can be considered the ultimate characterization of gene(s) or fragment(s) of DNA.
- DNA Sequencing is used for:
 - Mapping genomes
 - Determining gene structure and thus function
 - Detecting polymorphism (single nucleotide polymorphism SNP)
 - Analyzing genetic variation
 - Predicting the possible product(s) of DNA fragments
 - Many purposes depending on the questions one is asking

DNA sequencing methods

When learning about DNA sequencing methods, focus on:

- 1. How the nucleotide identity is identified (e.g., synthesis)?
- 2. What is the method of detection and differentiation between the four nucleotides?

Maxam-Gilbert Sequencing

In 1977, Allan Maxam and Walter Gilbert developed chemical sequencing method

Proc. Natl. Acad. Sci. USA Vol. 74, No. 2, pp. 560–564, February 1977 Biochemistry

A new method for sequencing DNA

(DNA chemistry/dimethyl sulfate cleavage/hydrazine/piperidine)

ALLAN M. MAXAM AND WALTER GILBERT

Department of Biochemistry and Molecular Biology, Harvard University, Cambridge, Massachusetts 02138

Contributed by Walter Gilbert, December 9, 1976

Maxam-Gilbert Sequencing

- 1. Base modification.
- 2. Removal of modified base from its sugar.
- 3. Breaking the phosphodiester bond.
- 4. Analyzing the fragments using gel electrophoresis.

Maxam-Gilbert Sequencing

MAN

Figure 1. Chemical targets in the Maxam-Gilbert DNA sequencing strategy. Dimethylsulphate or hydrazine will attack the purine or pyrimidine rings respectively and piperidine will cleave the phosphate bond at the 3' carbon.

т

т

Maxam-Gilbert Sequencing

Any idea why no (T) or (A) lanes?

How do we read the gel?

1.Fredrick Sanger has developed a sequencing method and received a Noble prize for it.

2.Sanger sequencing method is also called **Chain Termination Method** and **Dideoxy sequencing method.**

Sanger sequencing

• Employs:

- specific primers
- dNTPs
- ddNTPs
- DNA polymerase
- DNA template

DNA synthesis

DNA synthesis requires the availability of a 3'-OH and energy

DNA synthesis

Difference in OH location in sugar and consequences

July C

DNA synthesis

The absence of OH group on the 3' carbon of the sugar blocks further addition of nucleotides

23.7 DIDEOXYRIBOSE BLOCKS ELONGATION

Sanger sequencing procedure

July C

Sanger sequencing procedure

 Analysis using high resolution polyacrylamide gel electrophoresis.

 Fragments are detected using radioactive markers and autoradiography.

Sanger sequencing - Gel

FIGURE 2.8. An autoradiogram (X-ray film) of a DNA sequencing gel. Each sequence requires Four lanes, one for each base.

Sanger sequencing - Automated

• Each dideoxy nucleotide is attached to a florescent marker.

• At the end of each cycle, a laser beam can detect the florescent marker and thus record the position of the nucleotide.

Sanger sequencing - Automated

Chromatogram - Automated

Current sequencing technologies

The so called NGS

Current sequencing technologies

Next-generation sequencing must die!

"NGS technologies have already been around for almost 20 years. It doesn't strike me as particularly helpful to keep on labeling all of these different technologies with the same name." Keith Bradnam.

http://www.acgt.me/blog/2014/3/7/next-generationsequencing-must-die

What should we call them?

- Stop using NGS to describe sequencing technology.
- Refer to the technology by its method (e.g. sequencing-by-synthesis).
- Refer to the technology by the company that provides it (e.g. Oxford Nanopore).
- Use the term "current sequencing technologies" if people can know what current is.

What is "current" to you today?

http://www.acgt.me/blog/2014/3/7/next-generationsequencing-must-die

Pyrosequencing

- Method developed by Pål Nyrén and Mustafa Ronaghi in 1996.
- It is a DNA sequencing method by synthesis.
- The method detects incorporation of nucleotides by the pyrophosphate by product.

Pyrosequencing Principle

What is pyrophosphate?

Pyrosequencing Principle

What does the resulting sequence look like?

Pyrogram

July C

Illumina Sequencing technology

- It is a DNA sequencing method by synthesis.
- The method detects dNTP incorporation using fluorescence labeled nucleotides.
- Incorporation of label dNTPs terminates synthesis.
- After detection(imaging), the label is removed to allow incorporation of next nucleotide.

https://www.illumina.com/documents/products/techspotlights/ techspotlight_sequencing.pdf

Illumina Sequencing technology

ABi SOLiD Sequencing

- SOLiD stands for (Sequencing by Oligonucleotide Ligation and Detection).
- Sequencing by ligation.
- Ligation of four fluorescent labeled di-base probes.
- Different universal primers (different lengths) are used.
- The overlap of all ligation rounds will determine the DNA sequence.

http://www.appliedbiosystems.com/absite/us/en/home/applications-technologies/solidnext-generation-sequencing/next-generation-systems/solid-sequencing-chemistry.html

ny.

ABi SOLiD Sequencing

		Read Positio	m		4	3	4	0	0	1	0	3	10		12	13	14	10	10	17	18	13	20	21	22	23	24	20	20	21	28	25	30	31	32	33 3	34	3
	1	Universal seq primer 3'	(n)	•	٠				•	•				•	•				•	•				•	•				•	•				•	•			
DUN	2	Universal seq primer (n- 3'	1)	•				•	•				•	•				•	•				•	•				•	•				•	•				
DEL HO	3	Universal seq primer (n-2) 3'					•	•				•	•				•	•				•	•				•	•				•	•				•	•
	4	Universal seq primer (n-3) 3'				•	•				•	•				•	•				•	•				•	•				•	•				•	•	
	5	Universal seq primer (n-4) 3'			•	•				•	•				•	•				•	•				•	•				•	•				•	•		
					 Indicates positions of interogation 												Lig	atio	n	Cyr	cle			2	3	4	5		8	7								

Ion Torrent sequencing

- A semi-conductor sequencing technology.
- Small chips contain millions of wells/sensors.
- Does not use fluorescent light or camera imaging.

Chip Semiconductor Packaging

Principle

- Incorporation of correct nucleotide causes changes in pH.
- Why?
- Ion sensor that set under the well can detects\measures the changes of the pH.
- The chemical signals and converts it to voltage.
- This process is repeated every 15 seconds with different nucleotides washing over the chip.

Principle

Nice comparison

Nanopore sequencing

- No Synthesis or ligation.
- Realtime sequencing.
- Uses nanopores.
- Changes in electrical current passing through the nanopore is the method of nucleotide detection and identification.
- Each nucleotide has a specific electrical current disruption signature.

Principle

- 1. Double stranded DNA attaches to a helicase.
- 2. Single strand DNA passes through the nanopore and changes in flow of electric current is detected.
- 3. Each base has a different electrical signal.

Fast - Realtime - Accurate - Small device - Cheap The future?

MinION MkI: portable, real time biological analyses

Minion

PacBio sequencing

- Real time sequencing by synthesis.
- No pause between steps.
- Generate longer read lengths.
- Higher error rate!
- A template (SMRTbell) is created by ligating hairpin adaptors to both ends of (dsDNA).
- Four different fluorescent-labeled nucleotides
- Distinguish between fluorescent signals

PacBio sequencing

Fig. 1. Principle of single-molecule, real-time DNA sequencing. **(A)** Experimental geometry. A single molecule of DNA template-bound Φ 29 DNA polymerase is immobilized at the bottom of a ZMW, which is illuminated from below by laser light. The ZMW nanostructure provides excitation confinement in the zeptoliter (10^{-21} liter) regime, enabling detection of individual phospholinked nucleotide substrates against the bulk solution background as they are incorporated into the DNA strand by the polymerase. **(B)** Schematic event sequence of the phospholinked dNTP incorporation cycle,

with a corresponding expected time trace of detected fluorescence intensity from the ZMW. (1) A phospholinked nucleotide forms a cognate association with the template in the polymerase active site, (2) causing an elevation of the fluorescence output on the corresponding color channel. (3) Phosphodiester bond formation liberates the dye-linker-pyrophosphate product, which diffuses out of the ZMW, thus ending the fluorescence pulse. (4) The polymerase translocates to the next position, and (5) the next cognate nucleotide binds the active site beginning the subsequent pulse.

Which one to choose?

I suggest you look at this website for nice comparisons between sequencing technologies

Home How to ... NGS Field Guide 2014 About Legal Info News

2014 NGS Field Guide: Overview

These pages update the tables presented in <u>Travis Glenn's (2011)</u> "Field Guide to Next Generation DNA Sequencers" for 2014 values. Previous years' tables have been archived: <u>2011</u>, <u>2012</u>, and <u>2013</u>.

Search

Subscribe in a reader Subscribe to our RSS feed.

Subscribe by e-mail

http://www.molecularecologist.com/next-gen-fieldguide-2014/

Which one to choose?

1 2	Instrument	mplificatio	Run time	Millions of Reads/run	Bases / read	Reagent Cost/run	Reagent Cost/Gb	Reagent Cost/Mread	<u>bp/run</u>	<u>Gbp/run</u>	<u>cost/Gb</u>	5
3	Applied Biosystems 3730 (capillary)	PCR,	2 hrs.	0,000096	650	\$144	\$2 307 692	\$1 500 000	62 400	0.000	\$2 307 692 3	
4	454 GS. Ir. Titanium	emPCR	10 hrs	0.0000000	400	\$977	\$19 540 00	\$9 770 00	50,000,000	0.050	\$19 540 00	
5	454 ELX Titanium	emPCR	10 hrs	1	400	\$6 200	\$15,500,00	\$6,200,00	400,000,000	0.400	\$15,500,00	
6	454 FLX+	emPCR	20 hrs.	1	650	\$6,200	\$9,538,46	\$6,200,00	650,000,000	0.650	\$9.538.46	
7	Illumina GA IIx - v5 SE	bridgePCR	2 days	640	36	\$4,842	\$210.16	\$7.57	23.040.000.000	23.040	\$210.16	t
8	Illumina GA IIx - v5 PE	bridgePCR	14 days	640	288	\$17.978	\$97.54	\$28.09	184 320 000 000	184 320	\$97.54	
9	Illumina MiSeg v2 Nano	bridgePCR	17 hrs.	1	300	\$530	\$1 766 67	\$530.00	300,000,000	0 300	\$1 766 67	
10	Illumina MiSeg v2 Nano	bridgePCR	28 hrs.	1	500	\$639	\$1,278.00	\$639.00	500,000,000	0.500	\$1,278.00	
11	Illumina MiSeg v2 Micro	bridgePCR	19 hrs.	4	300	\$798	\$665.00	\$199.50	1,200,000,000	1,200	\$665.00	t
12	Illumina MiSeg v2	bridgePCR	5 hrs.	15	50	\$747	\$996.00	\$49.80	750,000,000	0.750	\$996.00	t
13	Illumina MiSeg v2	bridgePCR	24 hrs.	15	300	\$958	\$212.89	\$63.87	4 500 000 000	4 500	\$212.89	
14	Illumina MiSeg v2	bridgePCR	39 hrs.	15	500	\$1.066	\$142.13	\$71.07	7,500,000,000	7,500	\$142.13	
15	Illumina MiSeg v3	bridgePCR	20 hrs.	22	150	\$824	\$249.70	\$37.45	3,300,000,000	3,300	\$249.70	t
16	Illumina MiSeg v3	bridgePCR	55 hrs.	22	600	\$1.442	\$109.24	\$65.55	13,200,000,000	13,200	\$109.24	t
17	Illumina NextSeg 500	BridgePCR	15 hrs.	130	150	\$975	\$50.00	\$7.50	19 500 000 000	19 500	\$50.00	
18	Illumina NextSeg 500	BridgePCR	26 hrs.	130	300	\$1,560	\$40.00	\$12.00	39.000.000.000	39,000	\$40.00	
19	Illumina NextSeg 500	BridgePCR	11 hrs.	400	75	\$1,300	\$43.33	\$3.25	30,000,000,000	30,000	\$43.33	t
20	Illumina NextSeg 500	BridgePCR	18 hrs.	400	150	\$2,500	\$41.67	\$6.25	60,000,000,000	60,000	\$41.67	t
21	Illumina NextSeg 500	BridgePCR	30 hrs.	400	300	\$4,000	\$33.33	\$10.00	120,000,000,000	120,000	\$33.33	
22	Illumina HiSeg 2500 - rapid run	BridgePCR	10 hrs.	300	50	\$1,350	\$90.00	\$4.50	15.000.000.000	15.000	\$90.00	
23	Illumina HiSeg 2500 - rapid run	BridgePCR	27 hrs.	300	200	\$3,126	\$52.10	\$10.42	60,000,000,000	60,000	\$52.10	
24	Illumina HiSeg 2500 - rapid run	BridgePCR	40 hrs.	300	300	\$4,126	\$45.84	\$13.75	90,000,000,000	90,000	\$45.84	t
25	Illumina HiSeq 2500 - high output	BridgePCR	2 days	1500	50	\$5,866	\$78.01	\$3.01	75,000,000,000	75.000	¢ 79 21	
26	Illumina HiSeq 2500 - high output	BridgePCR	11 days	1500	200	\$3,800	\$70.21 \$45.07	\$3.91 \$0.05	200,000,000,000	75.000	\$70.21	F
	V3	BridgeDCD	40 bro	1500	200	\$13,560	\$45.27	\$9.05	300,000,000,000	300.000	\$45.27	
27	v4	BillyerCK	40 ms.	2000	50	\$5,866	\$58.66	\$2.93	100,000,000,000	100.000	\$58.66	
28	v4	BridgePCR	6 days	2000	250	\$14,950	\$29.90	\$7.48	500,000,000,000	500.000	\$29.90	
29	Illumina HiSeq X (2 flow cells)	BridgePCR	3 days	6000	300	\$12,750	\$7.08	\$2.13	1,800,000,000,00	1,800.000	\$7.08	
30	Ion Torrent – PGM 314 chip	emPCR	2.3 hrs.	0.475	200	\$349	\$3,673.68	\$734.74	95,000,000	0.095	\$3,673.68	
31	Ion Torrent – PGM 314 chip	emPCR	3.7 hrs.	0.475	400	\$474	\$2,494.74	\$997.89	190,000,000	0.190	\$2,494.74	L
32	Ion Torrent – PGM 316 chip	emPCR	3 hrs.	2.5	200	\$549	\$1,098.00	\$219.60	500,000,000	0.500	\$1,098.00	
33	Ion Torrent – PGM 316 chip	emPCR	4.9 hrs.	2.5	400	\$674	\$674.00	\$269.60	1,000,000,000	1.000	\$674.00	
34	Ion Torrent – PGM 318 chip	emPCR	4.4 hrs.	4.75	200	\$749	\$788.42	\$157.68	950,000,000	0.950	\$788.42	
35	Ion Torrent – PGM 318 chip	emPCR	7.3 hrs.	4.75	400	\$874	\$460.00	\$184.00	1,900,000,000	1.900	\$460.00	L
36	Ion Torrent - Proton I	emPCR	4 hrs.	70	175	\$1,000	\$81.63	\$14.29	12,250,000,000	12.250	\$81.63	L
37	Ion Torrent - Proton II (forecast)	emPCR	5 hrs.	280	175	\$1,000	\$20.41	\$3.57	49,000,000,000	49.000	\$20.41	
38	Ion Torrent - Proton III (forecast)	emPCR	6 hrs.	500	175	\$1,000	\$11.43	\$2.00	87,500,000,000	87.500	\$11.43	
39	Life Technologies SOLiD – 5500xl	emPCR	8 days	1410	110	\$10,503	\$67.72	\$7.45	155,100,000,000	155.100	\$67.72	L
40	Pacific Biosciences RS II	None - SMS	2 hrs.	0.03	3000	\$100	\$1,111.11	\$3,333.33	90,000,000	0.090	\$1,111.11	
41	Oxford Nanopore MinION (forecast)	None - SMS	≤6 hrs.	0.1	9000	\$900	\$1,000.00	\$9,000.00	900,000,000	0.900	\$1,000.00	
42	Oxford Nanopore GridION 2000 (forecast)	None - SMS	varies	4	10000	\$1,500	\$37.50	\$375.00	40,000,000,000	40.000	\$37.50	
43	Oxford Nanopore GridION 8000 (forecast)	None - SMS	varies	10	10000	\$1,000	\$10.00	\$100.00	100,000,000,000	100.000	\$10.00	

http://www.molecularecologist.com/next-gen-fieldguide-2014/

Expectations

• For each of the sequencing methods/ technology, you know:

- The general principle.
- Sequencing by?

Sequence detection by?

Acknowledgment

Molecular Biology class (Spring 2014):

Taiba Albarjes Noor Alrumaidhi Masumah Jassim Elaf Jamal Amna Al-rubayaa Esraa Jassim Mayouf Kareemah Al-Enezi Mona Abdi Shahad Aljandal

Disclaimer

Figures, photos, and graphs in my lectures are collected using google searches. I do not claim to have personally produced the material (except for some). I do cite only articles or books used. I thank all owners of the visual aid that I use and apologize for not citing each individual item. If anybody finds the inclusion of their material in my lectures a violation of their copy rights, please contact me via email.

hhalhaddad@gmail.com