

A look into the genome of *S. mansoni*

Arwa Khaled

Intro. to Genomics (485)

Tuesday 18/1/2021

Outline

- Selected paper
- Organism:
 - Taxsonomy
 - History of discovery
 - Physical charactstics
 - Parasitisim
 - Geographic distribution
 - Life cycle
 - Significance
- Sequenced sample info
- Sequencing strategy
- Sequencing method
- Genome annotation
- Interesting genome outcome

Selected paper

Vol 460 16 July 2009 doi:10.1038/nature08160

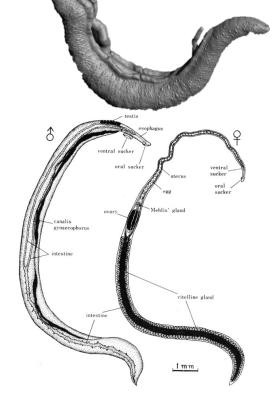
ARTICLES

The genome of the blood fluke Schistosoma mansoni

Matthew Berriman¹, Brian J. Haas³[†], Philip T. LoVerde⁴, R. Alan Wilson⁵, Gary P. Dillon⁵, Gustavo C. Cerqueira^{6,7,8}, Susan T. Mashiyama^{9,10}, Bissan Al-Lazikani¹¹, Luiza F. Andrade¹², Peter D. Ashton⁴, Martin A. Aslett¹, Daniella C. Bartholomeu³[†], Gaelle Blandin³, Conor R. Caffrey⁹, Avril Coghlan¹³, Richard Coulson², Tim A. Day¹⁴, Art Delcher⁷, Ricardo DeMarco^{5,15,16}, Appolinaire Djikeng³, Tina Eyre¹, John A. Gamble¹, Elodie Ghedin³[†], Yong Gu¹, Christiane Hertz-Fowler¹, Hirohisha Hirai¹⁷, Yuriko Hirai¹⁷, Robin Houston¹, Alasdair Ivens¹[†], David A. Johnston¹⁸[†], Daniela Lacerda³[†], Camila D. Macedo^{6,8}, Paul McVeigh¹⁴, Zemin Ning¹, Guilherme Oliveira¹², John P. Overington², Julian Parkhill¹, Mihaela Pertea⁷, Raymond J. Pierce¹⁹, Anna V. Protasio¹, Michael A. Quail¹, Marie-Adèle Rajandream¹, Jane Rogers¹[†], Mohammed Sajid⁹[†], Steven L. Salzberg^{7,8}, Mario Stanke²⁰, Adrian R. Tivey¹, Owen White³[†], David L. Williams²¹[†], Jennifer Wortman³[†], Wenjie Wu⁴[†], Mostafa Zamanian¹⁴, Adhemar Zerlotini¹¹, Claire M. Fraser-Liggett³[†], Barclay G. Barrell¹ & Najib M. El-Sayed^{3,6,7,8}

Schistosoma mansoni is responsible for the neglected tropical disease schistosomiasis that affects 210 million people in 76 countries. Here we present analysis of the 363 megabase nuclear genome of the blood fluke. It encodes at least 11,809 genes, with an unusual intron size distribution, and new families of micro-exon genes that undergo frequent alternative splicing. As the first sequenced flatworm, and a representative of the Lophotrochozoa, it offers insights into early events in the evolution of the animals, including the development of a body pattern with bilateral symmetry, and the development of tissues into organs. Our analysis has been informed by the need to find new drug targets. The deficits in lipid metabolism that make schistosomes dependent on the host are revealed, and the identification of membrane receptors, ion channels and more than 300 proteases provide new insights into the biology of the life cycle and new targets. Bioinformatics approaches have identified metabolic chokepoints, and a chemogenomic screen has pinpointed schistosome proteins for which existing drugs may be active. The information generated provides an invaluable resource for the research community to develop much needed new control tools for the treatment and eradication of this important and neglected disease.

nature

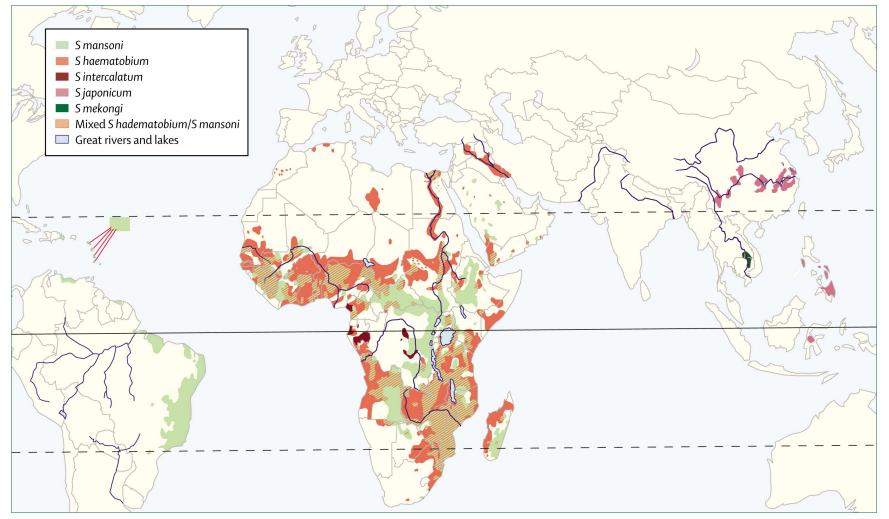

My organism: Taxonomy

- SK: Eukaryota
 - K: Metazoa
 - P: Platyhelminthes
 - C: Trematoda
 - O: Strigeidida
 - F: Schistosomatidae
 - G: Schistosoma
 - S: mansoni

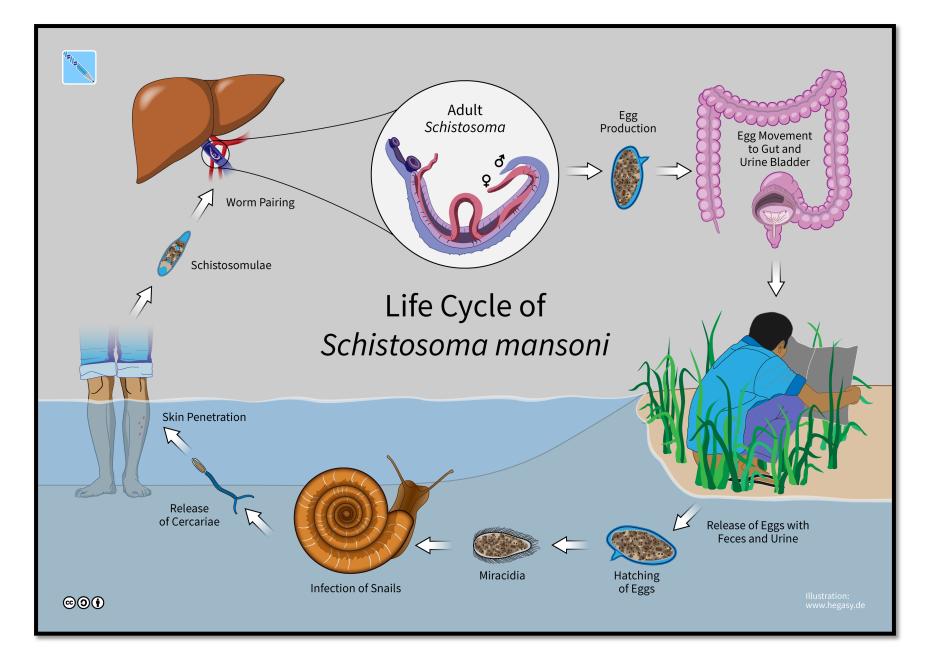
History of discovery

- 1950 BC Egyptian pharaohs record information about urinary/bladder infections
- 1200 BC Mummy uncovered with cirrhosis of the liver and the presence of a schistosome egg.
- 1851 Dr. Theodore Billharz, working in Egypt, identified the worms responsible for Schistosomiasis.(Distomum haematobium)
- The species distinction was first recognized by Patrick Manson
- Louis Westenra Sambon gave the new names Schistosoma haematobium and Schistosoma mansoni

My organism: Physical characteristics


- Adult human schistosomes are diecious
- Male length is (0.6-1.1 cm) and the width is 0.1 cm
- Female is thinner and longer (1.2-1.6 cm) and the width is (0.016cm)
- Male possess a structure known as a gynecophoral canal.
- S. mansoni possess a nervous system that includes an anterior brain and longitudinal nerve cords
- S. mansoni egg shows a prominent lateral spine

My organism: Parasitism


- Disease: schistosomiasis.
- Infection is caused by larval penetration during the exposure to the contaminated water.
- Intermediate host: *Biomphalaria alexandrina*.
- It causes abdominal pain, diarrhea, and blood in the stool and in urine.
- praziquantel, is almost exclusively used to treat the infection but this does not prevent reinfection

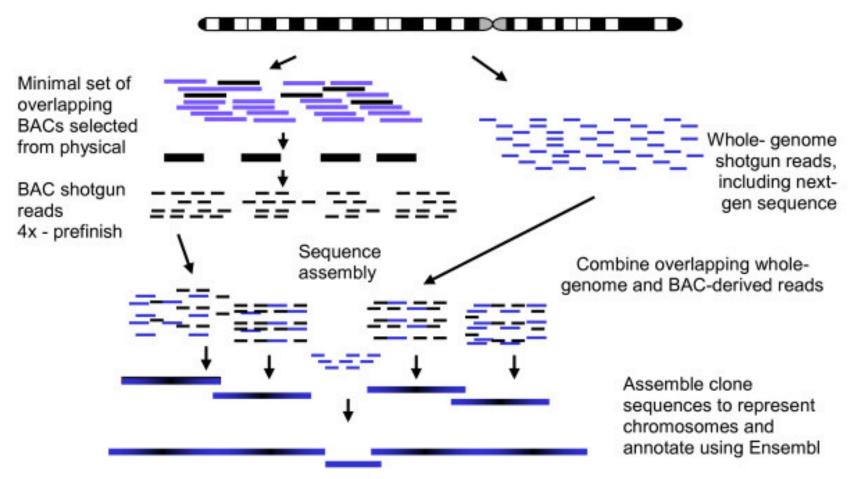
Geographic distribution

 occurs across much of: sub-Saharan Africa, parts of the Middle East, Brazil, Venezuela and some West Indian islands

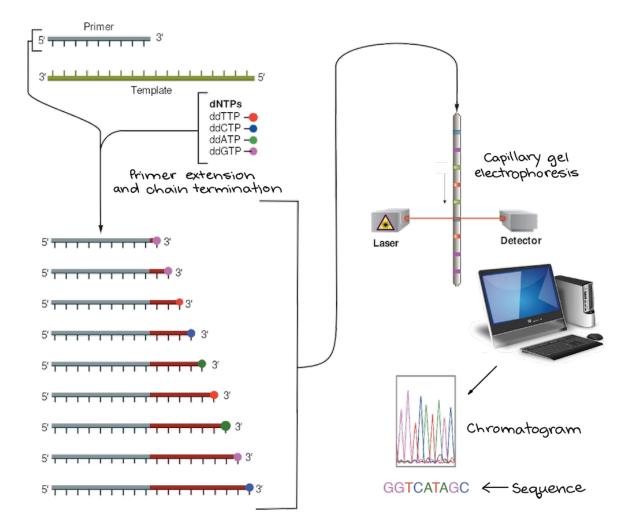
Life cycle

Significance

- WHO estimate cites over 700 million people as being at risk of infection, and approximately 200,000 annual deaths from Schistosomiasis alone
- After years of infection, the parasite can also damage the liver, intestine, lungs, and bladder.
- it offers insights into early events in the evolution
- of the animals, including the development of a body pattern with bilateral symmetry


Sequenced sample info

 Mixed-sex cercariae from the Puerto Rico isolate of S. mansoni released from infected *Biomphalaria glabrata* snails.


Sequencing strategy

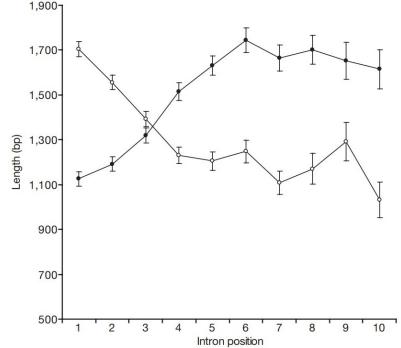
 Whole-genome shotgun+ Hierarchical (BAC clone) sequencing

Sequencing method

• Sanger sequencing method

Genome annotation

- Genome size: 363 Mb
- Coverage: Sixfold
- Number of chromosomes : 14+ZW or ZZ (2n)


Assembly statistics (f	iltered, contigs < 2kb	
Total scaffold length, bp		362,875,701
	Number of scaffolds	5,745
	Scaffold N50, bp	879,876
	Mean, bp	63,164
	Largest, bp	4,179,495
Total contig length, bp		350,053,037
	Number of contigs	31,407
	Contig N50, bp	17,677
	Mean, bp	11,146
	Largest, bp	139,372

Genome structural annotation

Genome content	
Average G + C content	35.3%
G + C (noncoding regions)	35.2%
G + C (coding regions)	36.3%
Repetitive sequence	45%
Coding bases	4.72%
Total number of protein coding genes	11,809
Total number of annotated transcripts	13,197
Number of genes with alternate splicing	980
Average exon number per gene*	7
Average intron size*, bp	1,692
Average exon size*, bp	217

Interesting genome outcome

- Approximately 45% of the *S.mansoni* genome was found to be repetitive.
- The length of introns varies according to their position in a transcript, counting from the 59 end (solid circles) and the 39 end (open circles).

Questions

- What do you think is the advantage of using both sequencing strategies?
- Why genome coverage is only 6x ?