The delicious Nile Tilapia

Noah Mohamed

Introduction to Genomics 485 Fall 2020

Outline

- Fun Facts
- Studied genome paper
- General genomic information
- Sequencing strategy
- Sequencing methods
- Genome Assembly
- Genome outcome

1- Among the most important farmed fishes globally.

www.shutterstock.com · 215937868

2- Some commercial names of Nile Tilapia:

- Mango fish
- Nilotica
- Boulti

3- Scientific name of Nile Tilapia: Oreochromis niloticus

- Oreo = Gold
- Chromis = Fish
- Niloticus = Nile river

4- It is advantageous to grow-out only male Tilapias, why?

<Genome paper>

Conte et al. BMC Genomics (2017) 18:341 DOI 10.1186/s12864-017-3723-5

BMC Genomics

RESEARCH ARTICLE

Open Access

A high quality assembly of the Nile Tilapia (*Oreochromis niloticus*) genome reveals the structure of two sex determination regions

Matthew A. Conte¹, William J. Gammerdinger¹, Kerry L. Bartie², David J. Penman² and Thomas D. Kocher^{1*}

<General genomic information>

1- Number of chromosomes in Nile tilapia: Diploid 2n = 44

2- Source of DNA used to sequence Nile tilapia: Homozygous clonal XX female Nile tilapia

<Sequencing strategy>

- The used strategy was BAC Clone Sequencing .

<Sequencing methods>

- PacBio SMRT sequencing method.
 SMRT → Single Molecule, Real-Time sequencing
- Paired-end sequencing library was used.

<Genome assembly>

• Using Bac clone sequencing, 37 de novo assemblies were generated based on both Canu and Falcon versions.

Canu assemblies	Genome size	N50 contig
Assembly #1	1,072,836,553 bp = 1Gb	2,994,568 bp = 2.9Mb
Assembly #3	985,204,113 bp = 1Gb	875,570 bp = 875Kb

Falcon assemblies	Genome size	N50 contig
Assembly #25	975,157,591 bp = 1Gb	3,213,649 bp = 3.2Mb
Assembly #28	982,875,404 bp = 1Gb	4,333,907 bp = 4.3Mb

<Genome assembly>

- The final chosen assembly was #14.
- Genome size \rightarrow 1,003,343,259 = $\frac{1Gb}{1}$
- # of reads \rightarrow 5.1Mb
- Genome coverage \rightarrow 44X
- Number of contigs \rightarrow 2.9Kb
- Number of scaffolds \rightarrow 5.9Kb
- N50 contigs \rightarrow 3.3Mb
- N50 scaffolds → 2.8Mb
- Largest contig \rightarrow 20Mb
- Largest scaffold \rightarrow 13.6Mb

<Genome outcome>

Features	Orenil1.1	O. niloticus
Genome size	9.2Mb	1Gb
Number of contigs	5,677	2,960
Genes and pseudogenes	30,174	38,412
Protein coding	26,329	29,249
Non-coding	3,508	8,599

<Genome outcome>

- New assembly and annotation of the Nile Tilapia.
- The comparison between the candidate de novo assemblies.
- Two large sex-determination regions were characterized.
 - The first is ~9Mb region in O. niloticus
- The second is ~50Mb region in the related species O. aureus
- Further characterization of these regions will have important economic implications for farmed Tilapia.

Questions

 The better the assembly, the more no. of contigs we get. (True or False)

 Can Sanger sequencing method be applied for this genome project. Why if yes or no.