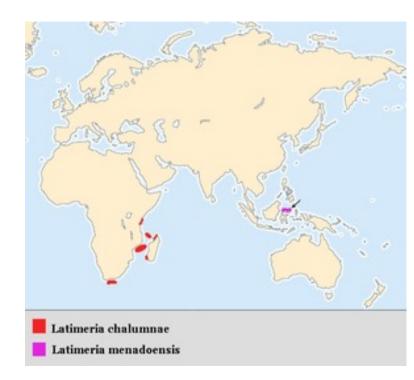

The African Coleacanth Genome

Outline

- General information
- Genome paper
- General genome information
- Sequencing strategy
- Sequencing Methods
- Genome assembly
- Genome outcome

General information


- Lineage of lobe-finned fish (extinct 70 million years ago).
- the only living member of its group.
- over 1m long, bluish in colour.
- had conspicuously fleshy fins that resembled the limbs of terrestrial vertebrates.

General information

- Geographical distribution
- of coelacanth
- Unique locomotion
- Scientific name:
- Latimeria chalumnae

Genome paper

nature

Explore Content V Journal Information V Publish With Us V

nature > articles > article

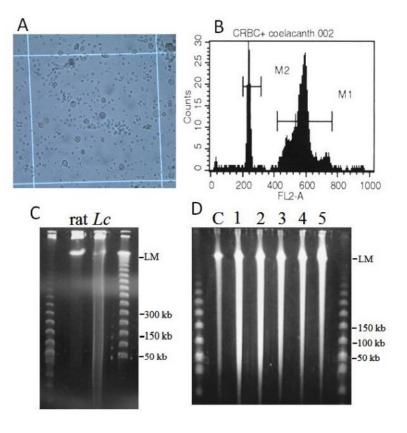
Open Access Published: 17 April 2013

The African coelacanth genome provides insights into tetrapod evolution

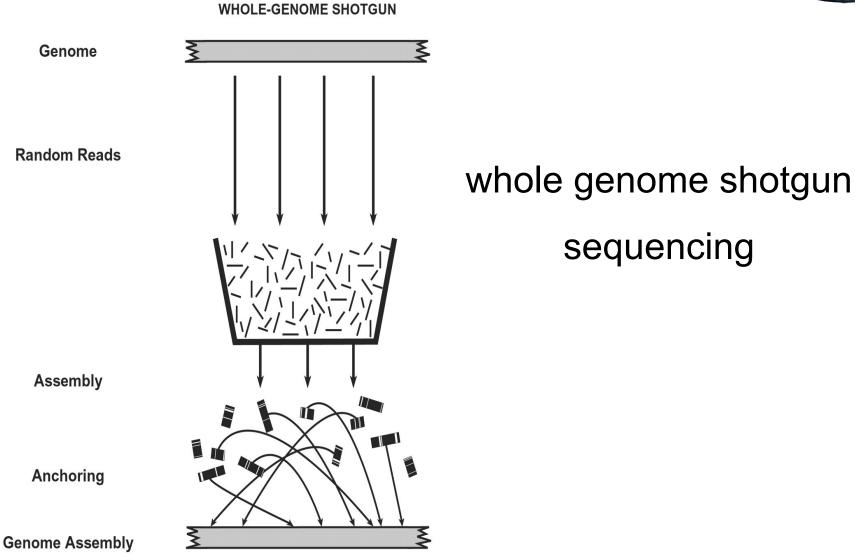
Chris T. Amemiya^{1,2}*, Jessica Alföldi³*, Alison P. Lee⁴, Shaohua Fan⁵, Hervé Philippe⁶, Iain MacCallum³, Ingo Braasch⁷, Tereza Manousaki^{5,8}, Igor Schneider⁹, Nicolas Rohner¹⁰, Chris Organ¹¹, Domitille Chalopin¹², Jeramiah J. Smith¹³, Mark Robinson¹, Rosemary A. Dorrington¹⁴, Marco Gerdol¹⁵, Bronwen Aken¹⁶, Maria Assunta Biscotti¹⁷, Marco Barucca¹⁷, Denis Baurain¹⁸, Aaron M. Berlin³, Gregory L. Blatch^{14,19}, Francesco Buonocore²⁰, Thorsten Burmester²¹, Michael S. Campbell²², Adriana Canapa¹⁷, John P. Cannon²³, Alan Christoffels²⁴, Gianluca De Moro¹⁵, Adrienne L. Edkins¹⁴, Lin Fan³, Anna Maria Fausto²⁰, Nathalie Feiner^{5,25}, Mariko Forconi¹⁷, Junaid Gamieldien²⁴, Sante Gnerre³, Andreas Gnirke³, Jared V. Goldstone²⁶, Wilfried Haerty²⁷, Mark E. Hahn²⁶, Uljana Hesse²⁴, Steve Hoffmann²⁸, Jeremy Johnson³, Sibel I. Karchner²⁶, Shigehiro Kuraku⁵†, Marcia Lara³, Joshua Z. Levin³, Gary W. Litman²³, Evan Mauceli³†, Tsutomu Miyake²⁹, M. Gail Mueller³⁰, David R. Nelson³¹, Anne Nitsche³², Ettore Olmo¹⁷, Tatsuya Ota³³, Alberto Pallavicini¹⁵, Sumir Panji²⁴†, Barbara Picone²⁴, Chris P. Ponting²⁷, Sonja J. Prohaska³⁴, Dariusz Przybylski³, Nil Ratan Saha¹, Vydianathan Ravi⁴, Filipe J. Ribeiro³†, Tatjana Sauka-Spengler³⁵, Giuseppe Scapigliati²⁰, Stephen M. J. Searle¹⁶, Ted Sharpe³, Oleg Simakov^{5,36}, Peter F. Stadler³², John J. Stegeman²⁶, Kenta Sumiyama³⁷, Diana Tabbaa³, Hakim Tafer³², Jason Turner-Maier³, Peter van Heusden²⁴, Simon White¹⁶, Louise Williams³, Mark Yandell²², Henner Brinkmann⁶, Jean-Nicolas Volff¹², Clifford J. Tabin¹⁰, Neil Shubin³⁸, Manfred Schartl³⁹, David B. Jaffe³, John H. Postlethwait⁷, Byrappa Venkatesh⁴, Federica Di Palma³, Eric S. Lander³, Axel Meyer^{5,8,25} & Kerstin Lindblad-Toh^{3,40}

The discovery of a living coelacanth specimen in 1938 was remarkable, as this lineage of lobe-finned fish was thought to have become extinct 70 million years ago. The modern coelacanth looks remarkably similar to many of its ancient relatives, and its evolutionary proximity to our own fish ancestors provides a glimpse of the fish that first walked on land. Here we report the genome sequence of the African coelacanth, *Latimeria chalumnae*. Through a phylogenomic analysis, we conclude that the lungfish, and not the coelacanth, is the closest living relative of tetrapods. Coelacanth protein-coding genes are significantly more slowly evolving than those of tetrapods, unlike other genomic features. Analyses of changes in genes and regulatory elements during the vertebrate adaptation to land highlight genes involved in immunity, nitrogen excretion and the development of fins, tail, ear, eye, brain and olfaction. Functional assays of enhancers involved in the fin-to-limb transition and in the emergence of extra-embryonic tissues show the importance of the coelacanth genome as a blueprint for understanding tetrapod evolution.

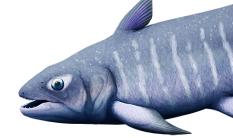
General Genome information

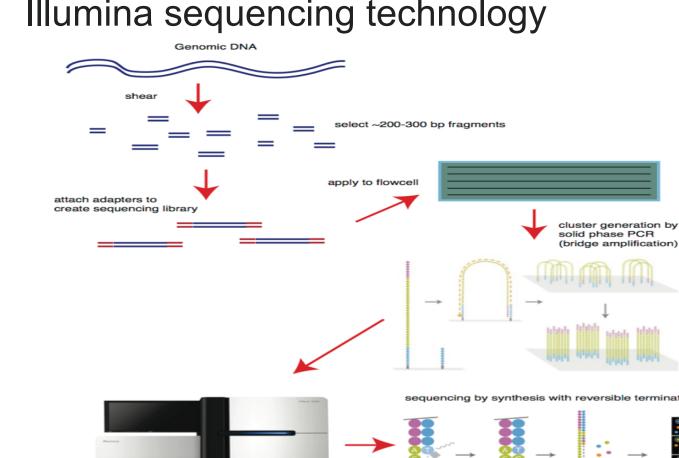

- 48 chromosomes
- The protein-coding genes are slowly evolving
 (contribute to ?)
- Is it important to examine the changes in genes and regulatory elements ?

Sequencing Strategy

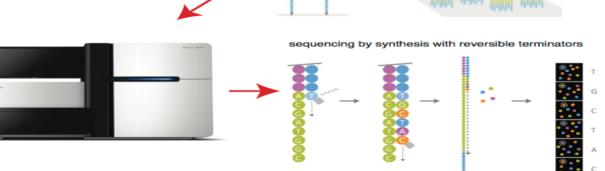

• DNA source: Blood sample

- A. Microscopic phase-contrast examination.
- B. Flow cytometric analysis of blood sample.
- C. Agarose-embedded Latimeria genomic DNA was run on a pulse field gel along with a similarly prepared sample from brown Norway rat.
- D. Agarose-embedded DNA was subjected to an EcoRI-EcoRI methylase competition reaction prior to electrophoresing.





Sequencing Strategy



Sequencing Method

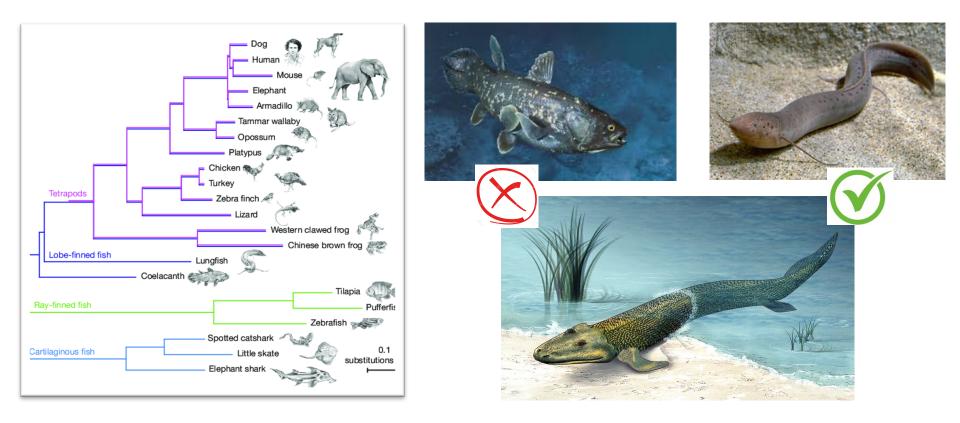
Illumina sequencing technology

Genome Assembly

- Assembled genome size = 2.86 Gb
- Assembly by ALLPATHSLG⁵⁵ (short read genome assembler)
- Contig N50 size of 12.7 Kb
- Scaffold N50 size of 924 Kb

Genome Annotation

- The genome assembly was annotated separately by both:
- 1.The Ensembl gene annotation pipeline19,033 protein-coding genes containing 21,817 transcripts2.MAKER13


29,237 protein-coding gene annotations

Genome Outcome

phylogenomic analysis:

Lung-fish NOT coelacanth closest living relative of tetrapods

Genome Outcome

• the water-to-land transition

critical characters in the morphological transition from water to land are reflected in the loss of specific genes along the phylogenetic branch leading to tetrapods

Genome Outcome

- The coelacanth lacks immunoglobulin-M
- all other major components of the immune system are present
- ➤ two IgW genes

Question

- Why it is important to sequence animals?
- Why it is important to use more than one assembly ?

Thank You

