Sequencing and assembly of the genome of whale shark `*Rhincodon typus*`

Aisha Al-Failakawy Intro. To Genomics 485 Fall 2020

outline

- General information(fun facts)
- Genome paper
- General genome info
- Sequencing strategy
- Sequencing methods
- Genome assembly
- Genome outcome

<u>General information (fun facts)</u>

largest shark in the worlds 60 tons (weight) 18.8 m (length)

➢ found in warm oceanic waters

capable of diving to depths where waters approach freezing Temperatures.

- Peaceful with humans
- \succ Easy to docile
- Swimmers are allowed to ride

Currently considered an endangered species

Contain over 300 row of tiny teeth20 filter pads which it uses to filter feed

- Males grow faster than females in the earlier stages of life
- Female larger in size

Genome paper

Read et al. BMC Genomics (2017) 18:532 DOI 10.1186/s12864-017-3926-9

BMC Genomics

RESEARCH ARTICLE

Draft sequencing and assembly of the genome of the world's largest fish, the whale shark: *Rhincodon typus* Smith 1828

Timothy D. Read^{1,2}, Robert A. Petit III^{1,2}, Sandeep J. Joseph^{1,2}, Md. Tauqeer Alam^{1,2}, M. Ryan Weil^{1,2}, Maida Ahmad^{1,2}, Ravila Bhimani^{1,2}, Jocelyn S. Vuong^{1,2}, Chad P. Haase^{1,2}, D. Harry Webb³, Milton Tan^{1,2*} and Alistair D. M. Dove³

General genome info

There are few publications on the genetics and genomics of whale sharks.

➤The genome sequence was derived from tissue samples from a male whale shark .

The number of chromosomes has not yet been achieved

➤Genome size : 3.44 Gb

Sequencing strategy

Whole Genome Shotgun Sequencing

Sequencing methods

Illumina sequencing method

Pyrosequencing method

<u>Genome</u> <u>assembly</u>

Attribute	Value	% of Total
Genome size (Gbp)	3.44	
DNA coding (bp)	10,400,226	0.41%
DNA G + C (bp)	1,059,229,091	41.3%
Number of scaffolds	997,976	
Scaffold N50 (bp)	5425	
Number of contigs	1,213,000	
Contig N50 (bp)	5304	
Protein coding genes	19,384	
Genes with function prediction	5380	27.8%
Genes assigned to KOGs	7038	36.3%
Genes with Pfam domains	6612	34.1%

- The genome sequence of an organism is now perhaps the single most important gateway to \geq understanding its biology.
- \geq The current DNA sequence can be mined for new genotyping tools for population genomics and the protein set can be compared intensively against known functions.
- \geq The long term goals include understanding the genetic nature of the large body size of the whale shark, its metabolic adaptations to its planktonic diet, and the evolution of its immune system in a comparative.
- \succ We pursued a strategy of primarily using cost-effective Illumina short read sequencing to produce a preliminary R. typus genomic dataset. This allowed us to maximize coverage of the genome with high quality data and give estimates of the genome size and extent of bacterial contamination of the source DNA and to provide what we believe is a quite complete, if fragmented, draft of the genome.
- \geq Future work will enhance the whale shark genome assembly using long reads using the Pacific Biosciences technology.