Molecular techniques I. DNA extraction

Course 281

Lessons for life

AIMS

Understand the sources of DNA in different organisms.

- Understand the cellular structure that needs to be disrupted to extract DNA.
- Understand the process of DNA isolation and the different methods employed.

 Understand the reasons for using specific chemicals in DNA extraction and what each does.

Cell Structure

Typical animal cell and plant cell

Cells and DNA

Where Do we get the DNA from?

• In an animal cell, DNA is found in the **nucleus** and **mitochondria**.

• In a plant cell, DNA is found in the **nucleus**, **mitochondria**, and **chloroplast**.

• In bacteria, DNA is found in **plasmids** and bacterial **chromosome**.

Cells and DNA

- The mitochondria and chloroplast resembles a bacteria in genome structure.
- Knowing the DNA source you are targeting is essential.

In humans, where can we get DNA from?

- All living cells contain hereditary information coded in DNA (some exceptions! What are they?).
- DNA in human cells is found in the nucleus and mitochondria.
- The DNA of the mitochondria resembles that of bacteria.
- The DNA in the nucleus is packaged into 22 pairs of autosomal chromosomes and one pair of sex chromosomes (XX or XY some exceptions).

July C

Mammals RBC

Birds RBC

- We can get DNA only from living cells.
- Can we get DNA from trimmed hair?
- Can we get DNA from teeth enamels?
- What about bone?

- Easy to collect and DNA is easy to extract.
- Saliva samples contain cells (mostly epithelial) and can be a good source of DNA.
- Check 23andme.com

Cells and DNA

What about other organisms?

Bacterial DNA

We can grow bacteria in the lab and extract chromosomal DNA and plasmid DNA.

MMMMMM

Plant DNA

Plants contain living cells and non-living cells

Plant leaves are good source of DNA. Other tissue may be hard to get DNA from.

Animal DNA

Animals are not different from humans!

Not every animal tissue has DNA!

Getting DNA

How to get DNA out of the cell?

Getting DNA

A new way to get DNA ☺

- 1. Cell and tissue disruption
- 2. Lysis of cell membrane

3. Separating DNA from the rest of the cell content.

1. Cell and tissue disruption

Enzymatic (proteinase K)

Grinding (liquid N) Boiling (Alkali)

2. Lysis of cell membrane

What is the cell membrane? What does the cell membrane contain?

Cell membrane

Cell membrane

- Hydrophilic ?
- Hydrophobic?

Phospholipid molecule

2. Lysis of cell membrane

Cell membrane contains:

- Phospholipid bilayer.
- Proteins.
- Other molecules.
- We need to open the cell membrane through cell lysis.
- We need to remove the proteins and other molecules.

2. Lysis of cell membrane

Lysis buffer:

- Detergent (SDS)
- Buffer (Tris-HCI)
- Salt
- Reducing agent (mercaptoethanol)
- Chelating agent (EDTA)

3. Separating DNA from the rest

Organic extraction (phenol-chloroform extraction) Column extraction (DNA selective binding)

Phenol-chloroform extraction protocol

By (·

Phenol-chloroform extraction protocol

Column extraction protocol

How it looks?

The secret of life in a speck of jelly! (Mendel's dwarf)

DNA storage

- DNA is stored in TE buffer to ensure stability and inhibit DNase.
- Long term storage is done using -80 freezers.
- -4 and -20 freezers are
 used for frequent use of
 the DNA sample.
- Freezing and thawing a sample may cause damage to DNA.

To know

Genomic DNA	DNA storage Detergent	DNA isolation
Organic extraction	RBC in mammals	Mitochondrial DNA
Cell and tissue disrupt	ion Phospholipid b	oilayer Reducing agent
Plasmid DNA	hydrophilic	WBC DNA
Cell membrane	Chloroplas	Column extraction
RBC in birds	salt Cell	Hydrophobic Iysis

Expectations

- You know the sources of DNA in various organisms.
- You know not all material from a living organism can be a source of DNA.
- You know the process of isolating DNA.
- You know the chemicals and what they do in DNA extraction protocol.
- You know the two major protocols of DNA extraction.
- You know DNA storage methods and stability.

For a smile

