

Lecture 27:

Chromosomal mutations

Course 281

Lessons for life

No matter how many mistakes you make or how slow you progress You are still way ahead of everyone who isn't trying.

AIMS

• Understand the mutations on a chromosomal level.

• Understand the different types of chromosomal mutations.

 Understand the consequences of chromosomal mutations and compare them to point mutations.

Mutation types

Chromosomal mutation

Point mutation

- Chromosomal mutations: are mutation that involve changes to the entire chromosome or sections of it. Also called segmental mutations.
- Chromosomal mutations are deviations from the normal condition of a chromosome both in structure and number.

Chromosomal mutations

Chromosomal mutations

Chromosome structure mutations

Chromosome number mutations

- Chromosome structure mutations: mutations that changes the amount of DNA in a chromosome or the orientation of the DNA within a chromosome.
- Chromosome number mutation: mutations that changes the number of chromosomes in a cell.

Chromosomal structural mutations

Let's focus on the chromosomal mutations that are associated with **DNA content**

- Deletions reduce the amount of DNA of a chromosome compared to the normal chromosome.
- Small deletions are less harmful than large deletions.
- Consequences of deletions depend on the genes lost.

Chromosomal deletion

- Example:
 - Williams syndrome
 - Wolf-Hirschhorn syndrome

(a) A deletion removes a chromosomal segment.

Williams syndrome

Wolf-Hirschhorn syndrome

Chromosomal duplication

(b) A duplication repeats a segment.

- Duplications increase the amount of DNA of a chromosome compared to the normal chromosome.
- Having extra DNA in a chromosome may alter the number of genes and thus alter the amount of gene product.
- Example:
 - Charcot–Marie–Tooth disease

Chromosomal duplication

(b) A duplication repeats a segment.

Charcot–Marie–Tooth disease

Chromosomal structural mutations

Let's focus on the chromosomal mutations that are associated with **DNA orientation**

Chromosomal inversion

(c) An inversion reverses a segment within a chromosome.

- Inversions involve the breakage of a segment and reversed and reattached.
- This mutation changes the arrangement of genes.
- Example:
 - There are some known inversions in the human genome but without an affect.
 - Why?

Chromosomal translocation

(d) A translocation moves a segment from one chromosome to another, nonhomologous one.

- Portions of one chromosome gets relocated to another chromosome.
- There are many types of this chromosomal mutations.

(d) A translocation moves a segment from one chromosome to another, nonhomologous one.

- Example:
 - XX male syndrome!
 - Translocation of SRY gene from Y chromosome to X chromosome.

XX male syndrome!

Chromosomal mutations

Chromosomal mutations

Chromosome structure mutations Chromosome number mutations

- Chromosome structure mutations: mutations that changes the amount of DNA in a chromosome or the orientation of the DNA within a chromosome.
- Chromosome number mutation: mutations that changes the number of chromosomes in a cell.

- Entire loss or gain of chromosomes due to lack of proper segregation of chromosomes during meiosis.
- This results in some gametes containing abnormal number of chromosomes.

How do chromosome separate?

Chromosomes segregate due to multiple factors. Failure in any one of these factors may result in abnormal number of chromosomes.

Jul C

- What is the proper normal number of chromosomes in a somatic human cell?
- What is the normal number of chromosomes in a gametic human cell?
- Somatic cells are called, and gametic cells are called

- Euploid cell: is a cell that contains one complete set of chromosomes of exact multiples of complete sets.
- Aneuploid cell: is a cell that has a chromosome number that is not an exact multiple sets of the haploid set of chromosomes.

Types of aneuploidy

1.**Nullisomy:** loss of a chromosome pair (2 chromosomes).

What do you think will happen?

Chromosomal number mutations Types of aneuploidy

2.Monosomy: loss of a single chromosome.

Types of aneuploidy

3. Trisomy: an extra chromosome.

Down syndrome

Types of aneuploidy

4. Tetrasomy: two extra chromosomes.

Tertrasomy X (XXXX)

To know

Aneuploid

Euploid

Chromosomal mutation

Chromosomal deletion

Monosomy

Chromosomal translocation

Chromosome structure mutations

Nullisomy

Trisomy

Chromosomal inversion

Chromosomal duplication

Chromosome number mutation

Tetrasomy

Segmental mutation

- You know the different types of chromosomal mutations.
- You know chromosomal mutations that affect the DNA content and orientation.
- You know the consequences of chromosomal mutations.
- Can we repair chromosomal mutations?

For a smile

biocomicals.com