Lecture 13:

Transcription in eukaryotes

Course 281

Lessons for life

Shit Academics Say @AcademicsSay

"Anyone who has never made a mistake has never tried anything new." - Albert Einstein

AIMS

• Understand the transcription process in eukaryotes.

- Understand the eukaryotic gene structure.
- Understand the sequence of events and the molecular machinery.
- Understand the molecular modifications of eukaryotic transcript and why they take place.
- Compare the transcription process of prokaryotes to that of eukaryotes.

Eukaryotes RNA polymerase

Unlike prokaryotes, eukaryotes have different kinds of RNA polymerases. Each RNA polymerase is responsible for transcription of specific RNA molecules.

1. RNA Pol I: Transcribes RNA found in ribosomes

- 28s ribosomal RNA
- 18s rRNA
- 5.8s rRNA

2. RNA Pol II: Transcribes

- m-RNA
- Some sn-RNA

3. RNA Pol III: Transcribes

- t-RNA
- 5s rRNA
- Some sn-RNA

• Eukaryotes possess more complex RNA polymerases.

• It requires three different RNA polymerases namely RNA polymerase I, RNA polymerase II, RNA polymerase III.

TABLE 4.1 FUNCTIONS OF THE THREE EUKARYOTIC RNA POLYMERASES				
Polymerase	Genes transcribed			
RNA polymerase I	28S, 5.8S, and 18S rRNA genes			
RNA polymerase II	Protein-coding genes, most snRNA genes, miRNA genes			
RNA polymerase III	Genes for 5S rRNA, tRNAs, snoRNAs, U6-snRNA			

Table 4.1 Introduction to Genetics (© Garland Science 2012)

Eukaryotes Gene structure

- Promoter.
- Promoter proximal elements.
- 5' Un-translated region (5' UTR).

Eukaryotes Gene structure

- Protein coding sequence.
- 3' Un-translated region (3' UTR).
- Exons: amino acid coding sequence.
- Introns: no code for amino acid.

Eukaryotic promoter

- Short sequence called (initiator):
 - Inr located at (seq +1).
- TATA box :
 - Located at -30 sequence.

© 2012 Pearson Education, Inc.

Eukaryotic promoter

Promoter proximal element:

- located upstream of the TATA box (-50 --200)
- Activators.
- Enhancers.

© 2012 Pearson Education, Inc.

Eukaryotes RNA polymerase

TATA Box **Promoter proximal element:** Activator, Enhancer, or Repressor

- Processing events are more extensive in eukaryotes.
- Like prokaryotes noncoding RNA has to be processed.
- Additionally precursor mRNAs also has to be processed to remove introns, some proteins are also processed.

Figure 4.9 Introduction to Genetics (© Garland Science 2012)

Chapter4

- Eukaryotic promoters are more complex.
- For some genes include the core promoter, and upstream elements.

• The difference between the promoters defines which genes are transcribed by which polymerase.

- The promoters for RNA polymerase II, stretch several kb upstream of the transcription start site.
- RNA polymerase II core promoter consists of two main segments.
- The first is the -25 or TATA box, which has the consensus

Figure 4.14 Introduction to Genetics (© Garland Science 2012)

• The second part of the core promoter is the initiator (Inr) sequence, located around +1.

(A) RNA polymerase I promoter

(B) RNA polymerase III promoter

Figure 4.15 Introduction to Genetics (© Garland Science 2012)

RNA polymerase I promoters consist of a core promoter region in the transcription start point, upstream control
 element is in nucleotides –45 and +20.

- RNA polymerase III promoters are variable.
- Some are located within the genes whose transcription they promote.
- These sequences span 50 to 100 bp and comprise two segments separated by variable region.

We will consider the transcription process to make m-RNA by RNA Pol II

- 1. Initiation: assembly of RNA Pol II with general transcription factors (GTFs) on promoter.
 - 1. TFIID binds to the TATA box.
 - 2. **TFIID is composed of two units:**

- TATA boxes binding protein (TBP)
 TBD approximated factors (TAEs)
- TBP associated factors (TAFs)

3. TFIIA and TFIIB bind to TFIID.

1. Initiation: assembly of RNA Pol II with general transcription factors (GTFs) on promoter.

- 5. RNA Pol II and TFIIF bind to (TFIID, TFIIA, TFIIB)
- 6. TFIIE binds to the complex.
- TFIIH (helicase) binds to the complex will be unwinding the promoter.
- 8. All elements make the transcription Preinitiation complex (PIC).

4.4 INITIATION OF TRANSCRIPTION IN BACTERIA AND EUKARYOTES

- The σ subunit recognizes the bacterial promoter
- Formation of the RNA polymerase II initiation complex
- Initiation of transcription by RNA polymerases I and III
- For RNA polymerase II, the initial contact is made by the protein called **transcription factor IID.**
- It is a multisubunit complex, made up of the TATAbinding protein (TBP) and twelve TBP-associated factors, or TAFs.

- Initiation complex must be activated before transcription.
- Activation involves addition
 of phosphate to C-terminal
 domain (CTD).

- Once these phosphates have been attached, the polymerase is able to leave the initiation complex and begin synthesizing RNA.
- After departure of the polymerase, transcription factors except TFIID and TFIIH remain, enabling re-initiation to occur if needed.

Chapter4

- RNA polymerase I forms an initiation complex with four multi-subunit proteins, one contains TBP.
- •This initiation complex then attaches to the RNA polymerase I core promoter.

- Initiation by RNA polymerase III begins with attachment of TBP of TFIIIB to core promoter.
- The RNA polymerase then attaches to the bound TBP.

Figure 4.21a Introduction to Genetics (© Garland Science 2012)

initiation of transcription by RNA polymerase III

Figure 4.21b Introduction to Genetics (© Garland Science 2012)

2. Promoter melting by TFIIH:

- The helicase activity of TFIIH unwind the promoter sequence to use a template.
- 3. Abortive initiation:
 - The RNA polymerase synthesizes short sequences of RNA but can not escape the promoter.

- 4. Promoter escape:
 - RNA Pol breaks the interactions with transcription factors and escape the promoter and start synthesizing RNA.

5. Elongation:

 RNA Pol adds the correct complementary NTPs to the template and continue. IF errors made proofreading capabilities fixes the problems.

6. Termination:

- When RNA Pol synthesize pass a poly(A) site in the transcript (5' AAUAAA 3'), the RNA synthesized is cleaved by:
 - CPSF (cleavage and polyadenylation specificity factor) protein.
 - CstF (cleavage stimulating factor) protein.
 - CFI and CFII (cleavage factor proteins).

 The three eukaryotic RNA polymerases each use different mechanisms for transcript termination.

RNA polymerase I: termination
involves a DNA-binding protein
that attaches DNA at a recognition
sequence located 12 to 20 bp
downstream of the point at which
transcription terminates.

polymerase is blocked by DNA-binding protein

Figure 4.31 Introduction to Genetics (© Garland Science 2012)

Chapter4

- RNA polymerase II: termination is accompanied by addition of a series of adenosine nucleotides, called the poly(A) tail, to the 3' end of the mRNA that is added by a DNA-*independent* RNA polymerase called poly(A) polymerase.
- This polymerase act at an internal site polyadenylation site which is cleaved to create a new 3' end to which the poly(A) tail is added.

- In mammals, polyadenylation site is located between
 10 and 30 nucleotides downstream of a signal sequence, almost always 5'-AAUAAA-3'.
- The signal sequence is the binding site for a multisubunit protein **cleavage and polyadenylation specificity factor** (CPSF).

• **CPSF** attaches to the polymerase complex during initiation of transcription, and ride along the template with RNA polymerase II.

• It binds to the signal sequence as soon as it is transcribed, initiating the polyadenylation reaction.

 As a result, transcription stops soon after the poly(A) signal sequence has been transcribed.

pre-mRNA

- The first product of transcription in eukaryotes is called pre-mRNA.
- Unlike the transcript of a prokaryote that get translated while being transcribed (coupled transcription and translation), the eukaryotic transcript needs some modification before leaving the nucleus to be translated.
- The pre-mRNA of eukaryotes gets processed to a mature mRNA.

pre-mRNA

What are the processes to produce mature mRNA?

(1) 5' modification(2) 3' modification(3) Intron splicing

pre-mRNA maturation

 It is referred to as the Capping of the 5' end.

 Adding a 7-methyl Guanine (m⁷G) to the 5' end using a (5' – 5') linkage.

HO

N(Ŧ)

CH₃

7-methylguanosine

OH

- Protecting the mature mRNA from degradation from exonucleases (why?).
- This is an important chemical signature for the translation of the transcript and initial binding to the ribosome.

- There is usually a triphosphate group at the 5' end of a polynucleotide.
- The RNAs made by RNA polymerase II are exceptions to this rule.
- 5' terminus has a more complex chemical structure, a 7-MeG is the nucleotide carrying the modified base 7methylguanosine. This is referred to as the cap structure.
- It is put in place soon after the RNA polymerase leaves the promoter, before the mRNA reaches 30 nucleotides in length.

Synthesis of the type 0 cap.

- The nucleotide at the 5' end "pppN" (terminal triphosphate).
- First GTP is attached to the terminal nucleotide, forming a 5'–5' triphosphate one phosphate from the GTP and two from terminal nucleotide of the mRNA.

• In second step a methyl group is added to position 7 of the guanine base.

(B) structure of the cap

Chapter4

- This modification involve the addition of 50-250 adenine nucleotides at the 3' end.
- This is called **poly(A) tails**.
- The poly(A) tails is synthesized without a template by an enzyme called poly(A) polymerase (PAP).

Why poly(A) tails?

- Help to export the mRNA from the nucleus.
- Prevent the mRNA from degradation by exonucleases.
- Helps in the initiation of translation.
- Helps in the regulation of translation.
- Helps to terminate transcription.

- Introns are the non-coding sequence of the gene that get transcribed but has to be removed before translation.
- Introns usually start with 5'-GU.
- Introns usually end with 3'-AG.
- The removal of introns from the pre-mRNA is called **intron splicing**.

- The molecular machinery that carries out splicing of the premature transcript is called **spliceosome.**
- The pre-mRNA binds to small nuclear ribonucleoprotein particles (snRNPs).
- snRNPs (U1, U2, U4, U5, U6) are composed of:
 - Small nuclear RNA (snRNA).
 - Associated proteins.

- 1.U1 snRNP binds to the introns 5' bind site.
- 2.U2 snRNP binds to the branch point sequence in the middle of the intron (usually Adenine (A)).

Intron splicing process

- 3.U4/U6 snRNP and U5 snRNP interact forming a unit.
- 4. The U4,U5,U6 bind to U1 and U2 making the intron loop and bend.

Intron splicing process

- 5. This brings the 5' splice site close to the 3' splice site.
- 6. U4 snRNP dissociates which activate the **spliceosome.**
- 7. The splice sites are excised and the intron is removed.
- 8. The two exons are ligated.
- 9. This takes place for every two exons in the gene.

- The nucleus can be divided into the **nucleolus**, where **ribosomal RNA genes** are transcribed, and the **nucleoplasm**, where other genes, including those for mRNA, are transcribed.
- The nucleoplasmic RNA fraction is called **heterogeneous nuclear RNA**.

• It is made up of a complex mixture of RNA molecules, many over 20 kb in length.

• The mRNA in the cytoplasm is also heterogeneous, but its average length is only 2 kb.

 If the mRNA in the cytoplasm is derived from hnRNA, then the primary transcripts are being shortened before the mRNA leaves the nucleus.

- There are consensus sequences for intron- exon splice site , which vary in different types of eukaryote.
- In vertebrates :

5' splice site: 5'-AGGUAAGU-3' 3' splice site: 5'-PyPyPyPyPyPyPyNCAG-3' Py is one of the two pyrimidine nucleotides (U or C), N is any nucleotide, and the arrow indicates the exon-intron boundary.

Figure 5.18 Introduction to Genetics (© Garland Science 2012)

- The splicing pathway involves three steps.
- The first step is cleavage at the 5' splice site, called the **donor** site.
- The resulting free 5' end is then attached to an internal branch site within the intron to form a lariat structure.
- The lariat is formed by creating a phosphodiester bond between the 5' carbon of the first nucleotide of the intron (the G of the GU motif) and the 2' carbon of the internal adenosine.

- The 3' splice site—the **acceptor site**—is then cleaved and the two exons joined together.
- The intron is released as the lariat structure, which later converts back to linear RNA and degraded.

• The splicing reaction is carried out by a set of RNA– protein complexes called **small nuclear ribonucleoproteins (snRNPs).**

• Each of these contains several proteins and one or two of the noncoding snRNAs.

• There are number of different snRNAs like U1, U2, U3, U4, U5, and U6. The U stands for "uracil-rich."

 Splicing process begins with U1–snRNP binding to a donor site.

- U2–snRNP then attaches to the branch site.
- U1– and U2–snRNPs move towards each other, bringing donor site close to the branch point.

- U5–snRNP and U4/U6–snRNP then attach, forming the spliceosome.
- The donor and acceptor sites now cleaves and two exons join together.

Figure 5.20 Introduction to Genetics (© Garland Science 2012)

The splicing of introns allows for generating many different combination of exons and thus many different proteins.

Summary and review

Prokaryotes	Eukaryotes		
No nucleus	Nucleus		
DNA in cytoplasm	DNA in nucleus		
Transcription in cytoplasm	Transcription in nucleus		
Translation in cytoplasm	Translation in cytoplasm		
Polcistronic transcripts (one transcript many genes)	Monocistronic transcript (one transcript one gene)		
Coupled transcription and translation	Transcription and translation NOT coupled		
mRNA not processed	RNA processed		
One RNA polymerase	Many RNA polymerases		

Summary and review

polycist	ronic	Alter	mative splicing	5' capping		
		TFIIB	snRNPs		3'UTR	
5'UTR				TFIIA		
PIC	RNA P	ol I	114	Splicecomo		
promoter	moter		04	Spliceosome	AG	
7-methy gua	anine	Pre-mR	NA	Promoter pr	oximal element	
				exon		
RNA Pol II	I	intron	TFIID	Branch	n point sequence	
			F	Poly(A) tail		
U1					U2	
	PA	Ρ	initiator	RNA Pol I	I	
activator	U5	Pre-initiation complex				
Т	ATA bo	X	enh	nancer	116	Ľ
5'-5' bond			GU	monocistronic		Je Contraction of the second s

Expectations

- You know the transcription process in eukaryotes.
- You know what is the eukaryotic gene is composed of.
- You know and memorize the names of the molecular machinery involved in eukaryotic transcription.
- You know the modifications that take place to the mRNA in eukaryotes.
- You know the similarities and differences between the transcription process in prokaryotes to that of eukaryotes.

For a smile

